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Main Lemma
.

LetI be a signature . Every Henkin :-theory It has a model.

Proof
. Inspired by the last Lemma (that H equates evey

herm to a constant symbol
we may try to define the underlying set of our future model as just
the set (of all constant symbols of to The only issue with his is that

it might be that KicEH for two distinct constant symbols 2
,
E2.

To bx this
,
we take as the underlying set := 4 = 71]2 : (C),

where - is the equivalence relation onC defined by
c

, -(n : <=) (c = () = H
.

The axious for equality(6) and maximal consistency of H ensures that

is indeed an equivalence relation. For := 191
,

an
, ...,

and EC"
,

we denote

[i]
-

:= (Sain
, (an]- 1. ..,

Can]a)
.

Wedefine a -structure M := 1 E
,
i) as follows :

(i) c= []n for ench = Const(i) = )
.

(ii) +
* I(m) := 16] ~

for each te Furctule) ,
a := la

, ...,
du)

,
where be <

is such What (f(ac
, an,..., au) = b) EH.

Proof of correcture. We first show that for each "There is a bes

such Not Ifa) = bleH
,
but this is a special case of the previous

Lemma
.

Second
,

we need to show let the definition is n-invariant,
i

.
e .

doesn't depend or the representatives of --clones . Suppose for

+ C" and b
,
16) are such It us (i

. e
.

A : ~(i)
,
(a)= EH,

and (Ft = d) EH
. By the axiom for equalit and function symbol and

maximal consistency of H
,

we have Ifa) = F(c)) EN and heare also

(b = d) H by the transitivity-of equality axioms al again maximit off.
(iii) RFIS) -

) holds :Es RatEH , where Repelali) and =C*



Proof of correctuen. This follows from the axiom for equality and relation symbol,
as well as the maximality of H.

Claim 1
. For each i- term t without variables and be),

th = 1972 iff (t = 8) EH,

Proof ofClaim
.

We prove this by induction on the construction of t

Case 1 : tic for some (2
.

Then the claim follows from the def , of ~

Case2: t := fit,...,
tr) for some fetunctule) and -terms t , ...,

the without variceles .
By induction we know let fo all is t bil

-

iff Ai = bil t H
,
and there

are bi such let Iti = bileH by the previous lemma
,

so we also have

tim = Viln
.

Then
, by the def of M

,
/167w

, ..., (babu) = [d]
-

Ge come

deC such But (f(b , . . . ,ba) = d) E H · Then by the transitivity-of-equality
axiom and max. of H

, Id = <) EH
,
and heave also

, City ....
tu) = 2) EH

by the axiom for equality al function symbol.

Claim2. MEL iff YeH
,

for each I-sentence 0.
-

Proof. We induct on the legth/construction of 4.

Casel : Y := Itita) for come --dermstyte wo variables
.
Then let [bi] := to

so by Claim
, (ti = bilEH .

Thus
, HitultH iff (b = bultH iff (bin = [be]

-

iff t t if Eti = t.

Case 2 : Y : = R(t , . . .

,
tal for come -terms t,...,

the without variables .
Then let

biJe:-t
,

so by Uniml, we have Hi = bileH
.

Then Rit , ...,
to th if

R(b
, , . . .,
but H iff (by the def of RE) R * (11]vs .... (bu]) holds if

A E R( +
,

. . .

/ tm) ·

Case 3 : Y : = 4 for come i-centence Y .
Then TYEH iff TEH if (by in-



duction) #4 iff MELY .

Case 4 :
4 := 4

,
-> Yz for some i-centeres 4, 14. .

Then 1T.- YeeH iff
- Y , EH or YeCH (by maximality and consistency of H1) iff (5) induction
ME -Y, or Et if ME (4,

-> 4. )
·

Case 5 : Y := JrY for some extended i-formula Mr.
·
Then (04E H

iff there is <2) such Not 44)EH = follows from the Heabinness of H

and follows from HW9 Q2) iff there is <t) such Ut MFN(Y)
iff there is <e) iah let 4/1) holds if I at such

Het ↑ * (r) (a) holds iff A FJrY .

This finishes the proof of Main Lemma
,
and here also of Godel completenes.

Complete and computable theories.

In the end of the 19h and beginning of 201 centuries
,

a demand arose

(by Hilbert and others) to build a complete Merg T for mathematics
let theory) or every just for avilhuatic (i

.
e

.
A := (IN

,
0
,

S
, +, :)

such But the axioms of this they are "easily recognizable .

" The latter
form was formalized by saying but Here is a computer program Lequiva-

leadly ,

a Turing machines a computable relation, etch that recognizes the

axious of T
, 10

, given a retance Y
,
it returns YES if GET and

NO
,
otherwise

.

Nonexamples .
(a) Th(N)

,
with N := ID ,

S
, +, i

,

is complete by definition ,
but

it is not even human recognizable ,
let alone by computers /recall Goldbach ,

Twic Primes).
18) PA and EFC are bot computer recognizable but Godel proved that



these are not completeKaories .

This theorem is known as Godel's

Incompletemen morem
,
whose version (b Rosser) says

It in fact any
-

consistent Way I that in rich enough ↓ "interpret" PA is either

incomplete of non-computable (ic e
.

not computer recognizable.
itIn other words

,
Sphm Ephath Up upheythe shiems"

We will sketch the proof of Godel's Incompletene ,
but let's discuss

the same question about reducts of N : = ( IN
,

0
,

S
, +, :) , namely : As := (IN

,
0

,
5)

and N : = (IN
,

0
, S

,

+).

Thoma
.

There is a complete computable try is in the signature 10
,
5) such that

Is ETs
,

i

. e
. is is a computable axiomatization fr Th/Ns).

Proof
.

Such
a is was constructed in homework and proven to beumplete

usingmnutel calegoricity.

Theorem (Presburger) .

There is a complete table 10, 5,- theory , namely PresA := PAlo
,

3
,i)compu

= all axioms of PA that only use P
,

S
,

+
,
such that N+ F Prest

,
i. e

. PresA is

a computable axiomatization of Th(N+).
-

Proof
.

Prest i call Presburger Arithmetic and the prof that it is complete
as a 10

,
3,- Meory uses the technique of quantifier elimination ,

which
is beyond our course. In fact, the proot shon let not only PresA is

complete but Th(N) is computable.

The issue arises when we have both +and become mis enables

coding of tuples of natural numbers into single natural numbers
Iria the Chinese Remainder theorem)

,
which in turn makes it possible

to encode cultureference/diagonalization ,
here Liar's Paradox : a centence which

says "I'm not provable from PA"


